Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol.

نویسندگان

  • W Reichenbecher
  • A Brune
  • B Schink
چکیده

Trihydroxybenzenes are degraded anaerobically through the phloroglucinol pathway. In Pelobacter acidigallici as well as in Pelobacter massiliensis, pyrogallol is converted to phloroglucinol in the presence of 1,2,3,5-tetrahydroxybenzene by intermolecular hydroxyl transfer. The enzyme catalyzing this reaction was purified to chromatographic and electrophoretic homogeneity. Gel filtration and electrophoresis revealed a heterodimer structure with an apparent molecular mass of 127 kDa for the native enzyme and 86 kDa and 38 kDa, respectively, for the subunits. The enzyme was not sensitive to oxygen. HgCl2, p-chloromercuribenzoic acid, and CuCl2 inhibited strongly the reaction indicating an essential function of SH-groups. Transhydroxylase had a pH-optimum of 7.0 and a pI of 4.1. The apparent temperature optimum was in the range of 53 degrees C to 58 degrees C. The activation energy for the conversion of pyrogallol and 1,2,3,5-tetrahydroxybenzene to phloroglucinol and tetrahydroxybenzene was 31.4 kJ per mol. Purified enzyme exhibited a specific activity of 3.1 mol min-1 mg-1 protein and an apparent Km for pyrogallol and 1,2,3,5-tetrahydroxybenzene of 0.70 mM and 0.71 mM, respectively. The enzyme was found to contain per mol heterodimer 1.1 mol molybdenum, 12.1 mol iron and 14.5 mol acid-labile sulfur. Requirement for molybdenum for transhydroxylating enzyme activity was proven also by cultivation experiments. No hints for the presence of flavins were obtained. The results presented here support the hypothesis that a redox reaction is involved in this intermolecular hydroxyl transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallization and preliminary X-ray analysis of the molybdenum-dependent pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici.

Crystals of the molybdo-/iron-sulfur protein pyrogallol:phloroglucinol hydroxyltransferase (transhydroxylase; EC 1.97.1.2) from Pelobacter acidigallici were grown by vapour diffusion in an N(2)/H(2) atmosphere using polyethylene glycol as a precipitant. In this microorganism, transhydroxylase converts pyrogallol to phloroglucinol in a unique reaction without oxygen transfer from water. Growth o...

متن کامل

Towards the reaction mechanism of pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici.

Conversion of pyrogallol to phloroglucinol was studied with the molybdenum enzyme transhydroxylase of the strictly anaerobic fermenting bacterium Pelobacter acidigallici. Transhydroxylation experiments in H218O revealed that none of the hydroxyl groups of phloroglucinol was derived from water, confirming the concept that this enzyme transfers a hydroxyl group from the cosubstrate 1,2,3, 5-tetra...

متن کامل

Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici.

Permeabilized cells and cell extracts of Pelobacter acidigallici catalyzed the conversion of pyrogallol (1,2,3-trihydroxybenzene) to phloroglucinol (1,3,5-trihydroxybenzene) in the presence of 1,2,3,5-tetrahydroxybenzene. Pyrogallol consumption by resting cells stopped after lysis by French press or mild detergent (cetyltrimethylammonium bromide [CTAB]) treatment. Addition of 1,2,3,5-tetrahydro...

متن کامل

Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols.

The Mo enzyme transhydroxylase from the anaerobic microorganism Pelobacter acidigallici catalyzes the conversion of pyrogallol to phloroglucinol. Such trihydroxybenzenes and their derivatives represent important building blocks of plant polymers. None of the transferred hydroxyl groups originates from water during transhydroxylation; instead a cosubstrate, such as 1,2,3,5-tetrahydroxybenzene, i...

متن کامل

A structural comparison of molybdenum cofactor-containing enzymes.

This work gives an overview of the recent achievements which have contributed to the understanding of the structure and function of molybdenum and tungsten enzymes. Known structures of molybdo-pterin cofactor-containing enzymes will be described briefly and the structural differences between representatives of the same and different families will be analyzed. This comparison will show that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1204 2  شماره 

صفحات  -

تاریخ انتشار 1994